Climate impacts from the sequestration of heat & CO»
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Explore the role of the ocean in affecting how warming relates to carbon emissions

Southern Ocean is potentially important player in affecting the anthropogenic heat
and carbon uptake

Talk plan:

1. Surface warming versus emissions

2. Response for long-term equilibrium

3. Response on multi-decadal timescale
4. Simplified atmosphere-ocean illustration

Phil Goodwin (Southampton), Ric Williams (Liverpool) & Andy Ridgwell (Bristol)
(Goodwin, Williams & Ridgwell, 2015, Nature Geoscience)



Climate response

climate response after decades
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1. Surface warming versus cumulative carbon emissions

explore relationship between carbon emissions and warming

Transient Climate Response to
Emissions (TCRE)

emissions

Warming Radiation
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AR = R(t) — R(t,)
aim to reveal competing effects of ocean heat & carbon uptake

avoid many important processes, such as other greenhouse
gases, aerosols ...



Temperature links to radiative forcing from CO»

AT  surface warming change
AR
AT = T AR  radiative forcing change
A climate feedback parame

absorption at ground level

X 100
S 80
= 601
S 40-
g 2 y 0
088 5, 0 (l)lz‘(')l %HLOHL{‘ CCEDAL(BOA!O HLO‘ 0, | Io 1.0 (rotation)
5 53 g whee oYM RaloTog g g 8
Wavbidngtrtum) 4
. . CO2 bands
radiative forcing from COx>
—2
AR = aln(CO5(t)/CO4(t,)) a = 5.35Wm
climate sensitivity from CO»
In(CO5(t)/COo(t
AT = ATQXCOQ ( 2(131/2 2( O)) ATQXCOQ =1.5t04.5K
climate feedback parameter
)\_1 _ ATQXC’OQ )\—1 =0.5t0 1.2 K(W m-2)-1

aln 2



Atmospheric CO2 response to carbon emissions

What is the effect of more CO>? reactions in seawater
oceans become more acidic CO% + HyO = HCO + H+

inhibits further ocean uptake HCO?,_ =CO;" +HT

Effect of external inputs of carbon: (a) transient response
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2. Climate response as air-sea equilibrium is approached
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climate response after decades
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3. Climate response on multi-decadal timescales
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3. Climate response on multi-decadal timescales for atmosphere-ocean system
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3. Climate response on multi-decadal timescales for atmosphere-ocean system
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3. Climate response on multi-decadal timescales
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3. Climate response on multi-decadal timescales
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3. Climate response on multi-decadal timescales
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Our tests of an atmosphere-ocean only (GENIE) model

5(a) 21st century surface warming from theory
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Our tests of an atmosphere-ocean only (GENIE) model

(a) cumulative carbon emissions
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3. Climate response on multi-decadal timescales
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surface warming increases in time due to weakening ocean heat uptake

surfaqe warmir]g depenplence on radiativg forcing
AT/R |

warming/ radiation

2000 2500 3000 3500 4000 4500 5000
time (year)

radiative forcing decreases in time due to ocean carbon uptake

radiative forcing dependence on carbon emissions

2 | " RIAJ

S T |\

35 4 -
o

5 s _

c 2

9 o 1

& 'e 2f —— |

g = - - - - - ‘

= 2000 2500 3000 3500 4000 4500 5000

time (year)

(Goodwin et al. 2015, Nature Geoscience)



3. Climate response on multi-decadal timescales

The TCRE changes by factor 2 over 5000 years in the GENIE model

warming response to carbon emissions (TCRE)
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Quantifying the Transient Climate Response to Emissions

AIter change in terrestrial
sink since preindustrial

ATL = Al /AL,

1 o a " %
AT:X(l_N)E(l—I_IUsat_AItGT
at 2011, cumulative emissions Al.,, 545 +/-85 PgC

atmospheric C increase
ocean C increase

240 +/- 10 PgC
155 +/- 30 PgC

terrestrial C increase Alier 150 +/- 90 PgC Al 0.28+/-0.2
ocean carbon undersaturation [y, ., 797 +/- 30 PgC If'}sat 1.5 +/-0.4

AT/Alcy, ~ 1.5 +/- 0.7 K per 1000 PgC

1.1+/- 0.5 K per 1000 PgC

for atmosphere-ocean only

for atmosphere-ocean-terrestrial system

For 2100, based on synthesis of coupled CIMP4 terrestrial coupled models
(Friedlingstein et al., 2006)

normalised change in terrestrial sink for 2100 AL’ (.27 to 0.14

implied terrestrial change from 2011 t0 2100in = AT /Al is 10% to -21%

(Goodwin et al. 2015, Nature Geoscience)
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* The ocean heat uptake & carbon undersaturation partly compensate,
helps determine how carbon emissions translate into global warming

modified by terrestrial drawdown, other greenhouse gases, aerosols ....

e Ventilation in the Southern Ocean is likely to play a particularly
Important role.

e Multidecadal variability in this relationship likely to be mainly from the
heat flux



