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(in °C W�1 m2) and S = �T2�CO2
 the equilibrium climate sensitivity, 

the equilibrium global average temperature change for a 
doubling (usually relative to pre-industrial) of the atmospheric 
CO2 concentration, which corresponds to a long-wave forcing 
of about 3.7 W m�2 (ref. 7). The beauty of this simple conceptual 
model of radiative forcing and climate sensitivity (equation (1)) 
is that the equilibrium warming is proportional to the radiative 
forcing and is readily computed as a function of the current CO2 
relative to the pre-industrial CO2: �T = S ln(CO2/CO2(t=1750))/ln2. 
The total forcing is assumed to be the sum of all individual 
forcings. The sensitivity S can also be phrased as8–10

                 S = �T0/(1 � f) (2)

where f is the feedback factor amplifying (if 0 < f < 1) or damping 
the initial blackbody response of �T0 = 1.2 °C for a CO2 doubling. 
!e total feedback can be phrased as the sum of all individual 
feedbacks9 (see Fig. 2; examples of feedbacks are increases in 
the greenhouse gas water vapour with warming; other feedbacks 
are associated with changes in lapse rate, albedo and clouds). To 
"rst order, the feedbacks are independent of T, yielding a climate 
sensitivity that is constant over time and similar between many 
forcings. !e global temperature response from di#erent forcings is 
therefore approximately additive11. However, detailed studies "nd 
that some feedbacks will change with the climate state12–14, which 
means that the assumption of a linear feedback term ��T is valid 
only for perturbations of a few degrees. !ere is a di#erence in the 
sensitivity to radiative forcing for di#erent forcing mechanisms, 

which has been phrased as their ‘e$cacy’7,15. !ese e#ects are 
represented poorly or not at all in simple climate models16. A more 
detailed discussion of the concepts and the history is given in 
refs 5, 7, 17–20.

Note that the concept of climate sensitivity does not quantify 
carbon-cycle feedbacks; it measures only the equilibrium surface 
response to a speci"ed CO2 forcing. !e timescale for reaching 
equilibrium is a few decades to centuries and increases strongly 
with sensitivity21. !e transient climate response (TCR, de"ned as 
the warming at the point of CO2 doubling in a model simulation in 
which CO2 increases at 1% yr�1) is a measure of the rate of warming 
while climate change is evolving, and it therefore depends on the 
ocean heat uptake �Q. !e dependence of TCR on sensitivity 
decreases for high sensitivities9,22,23.

ESTIMATES FROM COMPREHENSIVE MODELS AND PROCESS STUDIES

Ever since concern arose about increases of CO2 in the atmosphere 
causing warming, scientists have attempted to estimate how 
much warming will result from, for example, a doubling of the 
atmospheric CO2 concentration. Even the earliest estimates ranged 
remarkably close to our present estimate of a likely increase of 
between 2 and 4.5 °C (ref. 24). For example, Arrhenius25 and 
Callendar26, in the years 1896 and 1938, respectively, estimated that 
a doubling of CO2 would result in a global temperature increase of 
5.5 and 2 °C. Half a century later, the "rst energy-balance models, 
radiative convective models and general circulation models 
(GCMs) were used to quantify forcings and feedbacks, and with 
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Figure 1 The concept of radiative forcing, feedbacks and climate sensitivity. a, A change in a radiatively active agent causes an instantaneous radiative forcing (RF). b, The 
standard definition of RF includes the relatively fast stratospheric adjustments, with the troposphere kept fixed. c, Non-radiative effects in the troposphere (for example of 
CO2 heating rates on clouds and aerosol semi-direct and indirect effects) occurring on similar timescales can be considered as fast feedbacks or as a forcing. d–f, During 
the transient climate change phase (d), the forcing is balanced by ocean heat uptake and increased long-wave radiation emitted from a warmer surface, with feedbacks 
determining the temperature response until equilibrium is reached with a constant forcing (e, f). The equilibrium depends on whether additional slow feedbacks (for 
example ice sheets or vegetation) with their own intrinsic timescale are kept fixed (e) or are allowed to change (f).

736 nature geoscience | ADVANCE ONLINE PUBLICATION | www.nature.com/naturegeoscience

climate response after decades

from Knutti and Hegerl (2008)

climate response after centuries

REVIEW ARTICLE

(in °C W�1 m2) and S = �T2�CO2
 the equilibrium climate sensitivity, 

the equilibrium global average temperature change for a 
doubling (usually relative to pre-industrial) of the atmospheric 
CO2 concentration, which corresponds to a long-wave forcing 
of about 3.7 W m�2 (ref. 7). The beauty of this simple conceptual 
model of radiative forcing and climate sensitivity (equation (1)) 
is that the equilibrium warming is proportional to the radiative 
forcing and is readily computed as a function of the current CO2 
relative to the pre-industrial CO2: �T = S ln(CO2/CO2(t=1750))/ln2. 
The total forcing is assumed to be the sum of all individual 
forcings. The sensitivity S can also be phrased as8–10

                 S = �T0/(1 � f) (2)

where f is the feedback factor amplifying (if 0 < f < 1) or damping 
the initial blackbody response of �T0 = 1.2 °C for a CO2 doubling. 
!e total feedback can be phrased as the sum of all individual 
feedbacks9 (see Fig. 2; examples of feedbacks are increases in 
the greenhouse gas water vapour with warming; other feedbacks 
are associated with changes in lapse rate, albedo and clouds). To 
"rst order, the feedbacks are independent of T, yielding a climate 
sensitivity that is constant over time and similar between many 
forcings. !e global temperature response from di#erent forcings is 
therefore approximately additive11. However, detailed studies "nd 
that some feedbacks will change with the climate state12–14, which 
means that the assumption of a linear feedback term ��T is valid 
only for perturbations of a few degrees. !ere is a di#erence in the 
sensitivity to radiative forcing for di#erent forcing mechanisms, 

which has been phrased as their ‘e$cacy’7,15. !ese e#ects are 
represented poorly or not at all in simple climate models16. A more 
detailed discussion of the concepts and the history is given in 
refs 5, 7, 17–20.

Note that the concept of climate sensitivity does not quantify 
carbon-cycle feedbacks; it measures only the equilibrium surface 
response to a speci"ed CO2 forcing. !e timescale for reaching 
equilibrium is a few decades to centuries and increases strongly 
with sensitivity21. !e transient climate response (TCR, de"ned as 
the warming at the point of CO2 doubling in a model simulation in 
which CO2 increases at 1% yr�1) is a measure of the rate of warming 
while climate change is evolving, and it therefore depends on the 
ocean heat uptake �Q. !e dependence of TCR on sensitivity 
decreases for high sensitivities9,22,23.

ESTIMATES FROM COMPREHENSIVE MODELS AND PROCESS STUDIES

Ever since concern arose about increases of CO2 in the atmosphere 
causing warming, scientists have attempted to estimate how 
much warming will result from, for example, a doubling of the 
atmospheric CO2 concentration. Even the earliest estimates ranged 
remarkably close to our present estimate of a likely increase of 
between 2 and 4.5 °C (ref. 24). For example, Arrhenius25 and 
Callendar26, in the years 1896 and 1938, respectively, estimated that 
a doubling of CO2 would result in a global temperature increase of 
5.5 and 2 °C. Half a century later, the "rst energy-balance models, 
radiative convective models and general circulation models 
(GCMs) were used to quantify forcings and feedbacks, and with 

Temperature 
profile

Tropopause

Ice sheets 
and vegetation

Instantaneous RF

Whole 
atmosphere fixed

Ocean
Initial state

Stratospheric adjustments

Stratospheric 
adjusted RF

Fixed troposphere

Fixed surface

Timescale: 
days to months

Tropospheric adjustments

Effective RF/
zero surface 

temperature change RF

Non-radiative effects

Fixed surface

Timescale: 
days to months

F from 2 CO2

Climate 
feedbacks

Equilibrium 
warming S

Very little
ocean heat

uptake

Timescale:
centuries

Timescale:
millennia

Additional forcing
from slow feedbacks

Equilibrium 
warming 
with slow
feedbacks

Climate 
feedbacks

Transient 
warming T

Large
ocean heat

uptake

Timescale:
decades

F

Q

Q = F –  T

Figure 1 The concept of radiative forcing, feedbacks and climate sensitivity. a, A change in a radiatively active agent causes an instantaneous radiative forcing (RF). b, The 
standard definition of RF includes the relatively fast stratospheric adjustments, with the troposphere kept fixed. c, Non-radiative effects in the troposphere (for example of 
CO2 heating rates on clouds and aerosol semi-direct and indirect effects) occurring on similar timescales can be considered as fast feedbacks or as a forcing. d–f, During 
the transient climate change phase (d), the forcing is balanced by ocean heat uptake and increased long-wave radiation emitted from a warmer surface, with feedbacks 
determining the temperature response until equilibrium is reached with a constant forcing (e, f). The equilibrium depends on whether additional slow feedbacks (for 
example ice sheets or vegetation) with their own intrinsic timescale are kept fixed (e) or are allowed to change (f).

736 nature geoscience | ADVANCE ONLINE PUBLICATION | www.nature.com/naturegeoscience

Climate response 

R R

RN

N



�T =
✓

@T

@R

◆ ✓
@R

@Iem

◆
�Iem

�R = R(t)�R(t
o

)

�I
em

= I
em

(t)� I
em

(t
o

)

�T = T (t)� T (t
o

)

1. Surface warming versus cumulative carbon emissions

aim to reveal competing effects of ocean heat & carbon uptake

avoid many important processes, such as other greenhouse 
gases, aerosols ...

explore relationship between carbon emissions and warming



�T =
�R

�

Temperature links to radiative forcing from CO2
surface warming change
radiative forcing change

�T

�R

� climate feedback parameter

=0.5 to 1.2 K(W m-2)-1
��1 =

�T2⇥CO2

a ln 2

climate feedback parameter

climate sensitivity from CO2

�T = �T2⇥CO2

ln(CO2(t)/CO2(to))
ln 2

�T2⇥CO2 =1.5 to 4.5 K

λB
λ(n

or
m

ali
se

d)
ab

so
rp

tio
n 

%
 

ab
so

rp
tio

n 
%

 

100
80
60
40
20
0

100
80
60
40
20
0

(a) black body normalised emission curves

6000K 
(Sun)

(c) absorption at ground level

(b) absorption at 11 Km

255K 
(Earth)

0.
1 0.
15

0.
2

0.
3

0.
5

1.
0

1.
5 2.
0 3.0 5.
0

10 15 20 30 50 10
0

Wavelength (μm) 

O2O2 O2 O2 O3

O2

O2

H2O

H2O H2OH2O
CO2H2O

CH4 CH4

CO2
N2O H2O N2O

N2O

O3
O3CO2

O3 H2O (rotation)
CO

HOOO2 CO2

ultraviolet infrared
visible

ab
so

rp
tio

n 
%

 
100
80
60
40
20
0

absorption at ground level

O2O2 O2 O2 O3

O2

O2

H2O

H2O H2OH2O
CO2H2O

CH4 CH4

CO2
N2O H2O N2O

N2O

O3
O3CO2

O3 H2O (rotation)
CO

HOOO2 CO2

ultraviolet infrared
visible

0.
1 0.
15

0.
2

0.
3

0.
5

1.
0

1.
5 2.
0 3.0 5.
0

10 15 20 30 50 10
0

Wavelength (μm) CO2 bands

a = 5.35Wm�2
radiative forcing from CO2

�R = a ln(CO2(t)/CO2(to))



What is the effect of more CO2?
oceans become more acidic
inhibits further ocean uptake

Atmospheric CO2 response to carbon emissions
reactions in seawater
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doubling (usually relative to pre-industrial) of the atmospheric 
CO2 concentration, which corresponds to a long-wave forcing 
of about 3.7 W m�2 (ref. 7). The beauty of this simple conceptual 
model of radiative forcing and climate sensitivity (equation (1)) 
is that the equilibrium warming is proportional to the radiative 
forcing and is readily computed as a function of the current CO2 
relative to the pre-industrial CO2: �T = S ln(CO2/CO2(t=1750))/ln2. 
The total forcing is assumed to be the sum of all individual 
forcings. The sensitivity S can also be phrased as8–10

                 S = �T0/(1 � f) (2)

where f is the feedback factor amplifying (if 0 < f < 1) or damping 
the initial blackbody response of �T0 = 1.2 °C for a CO2 doubling. 
!e total feedback can be phrased as the sum of all individual 
feedbacks9 (see Fig. 2; examples of feedbacks are increases in 
the greenhouse gas water vapour with warming; other feedbacks 
are associated with changes in lapse rate, albedo and clouds). To 
"rst order, the feedbacks are independent of T, yielding a climate 
sensitivity that is constant over time and similar between many 
forcings. !e global temperature response from di#erent forcings is 
therefore approximately additive11. However, detailed studies "nd 
that some feedbacks will change with the climate state12–14, which 
means that the assumption of a linear feedback term ��T is valid 
only for perturbations of a few degrees. !ere is a di#erence in the 
sensitivity to radiative forcing for di#erent forcing mechanisms, 

which has been phrased as their ‘e$cacy’7,15. !ese e#ects are 
represented poorly or not at all in simple climate models16. A more 
detailed discussion of the concepts and the history is given in 
refs 5, 7, 17–20.

Note that the concept of climate sensitivity does not quantify 
carbon-cycle feedbacks; it measures only the equilibrium surface 
response to a speci"ed CO2 forcing. !e timescale for reaching 
equilibrium is a few decades to centuries and increases strongly 
with sensitivity21. !e transient climate response (TCR, de"ned as 
the warming at the point of CO2 doubling in a model simulation in 
which CO2 increases at 1% yr�1) is a measure of the rate of warming 
while climate change is evolving, and it therefore depends on the 
ocean heat uptake �Q. !e dependence of TCR on sensitivity 
decreases for high sensitivities9,22,23.

ESTIMATES FROM COMPREHENSIVE MODELS AND PROCESS STUDIES

Ever since concern arose about increases of CO2 in the atmosphere 
causing warming, scientists have attempted to estimate how 
much warming will result from, for example, a doubling of the 
atmospheric CO2 concentration. Even the earliest estimates ranged 
remarkably close to our present estimate of a likely increase of 
between 2 and 4.5 °C (ref. 24). For example, Arrhenius25 and 
Callendar26, in the years 1896 and 1938, respectively, estimated that 
a doubling of CO2 would result in a global temperature increase of 
5.5 and 2 °C. Half a century later, the "rst energy-balance models, 
radiative convective models and general circulation models 
(GCMs) were used to quantify forcings and feedbacks, and with 
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Figure 1 The concept of radiative forcing, feedbacks and climate sensitivity. a, A change in a radiatively active agent causes an instantaneous radiative forcing (RF). b, The 
standard definition of RF includes the relatively fast stratospheric adjustments, with the troposphere kept fixed. c, Non-radiative effects in the troposphere (for example of 
CO2 heating rates on clouds and aerosol semi-direct and indirect effects) occurring on similar timescales can be considered as fast feedbacks or as a forcing. d–f, During 
the transient climate change phase (d), the forcing is balanced by ocean heat uptake and increased long-wave radiation emitted from a warmer surface, with feedbacks 
determining the temperature response until equilibrium is reached with a constant forcing (e, f). The equilibrium depends on whether additional slow feedbacks (for 
example ice sheets or vegetation) with their own intrinsic timescale are kept fixed (e) or are allowed to change (f).

736 nature geoscience | ADVANCE ONLINE PUBLICATION | www.nature.com/naturegeoscience

�T =
✓

1
�

◆ ✓
a

IB

◆
�Iem

Williams et al. (2012) GRL
1.2 +/- 0.7 K per 1000 PgC�T/�Iem ⇠



REVIEW ARTICLE

(in °C W�1 m2) and S = �T2�CO2
 the equilibrium climate sensitivity, 

the equilibrium global average temperature change for a 
doubling (usually relative to pre-industrial) of the atmospheric 
CO2 concentration, which corresponds to a long-wave forcing 
of about 3.7 W m�2 (ref. 7). The beauty of this simple conceptual 
model of radiative forcing and climate sensitivity (equation (1)) 
is that the equilibrium warming is proportional to the radiative 
forcing and is readily computed as a function of the current CO2 
relative to the pre-industrial CO2: �T = S ln(CO2/CO2(t=1750))/ln2. 
The total forcing is assumed to be the sum of all individual 
forcings. The sensitivity S can also be phrased as8–10

                 S = �T0/(1 � f) (2)

where f is the feedback factor amplifying (if 0 < f < 1) or damping 
the initial blackbody response of �T0 = 1.2 °C for a CO2 doubling. 
!e total feedback can be phrased as the sum of all individual 
feedbacks9 (see Fig. 2; examples of feedbacks are increases in 
the greenhouse gas water vapour with warming; other feedbacks 
are associated with changes in lapse rate, albedo and clouds). To 
"rst order, the feedbacks are independent of T, yielding a climate 
sensitivity that is constant over time and similar between many 
forcings. !e global temperature response from di#erent forcings is 
therefore approximately additive11. However, detailed studies "nd 
that some feedbacks will change with the climate state12–14, which 
means that the assumption of a linear feedback term ��T is valid 
only for perturbations of a few degrees. !ere is a di#erence in the 
sensitivity to radiative forcing for di#erent forcing mechanisms, 

which has been phrased as their ‘e$cacy’7,15. !ese e#ects are 
represented poorly or not at all in simple climate models16. A more 
detailed discussion of the concepts and the history is given in 
refs 5, 7, 17–20.

Note that the concept of climate sensitivity does not quantify 
carbon-cycle feedbacks; it measures only the equilibrium surface 
response to a speci"ed CO2 forcing. !e timescale for reaching 
equilibrium is a few decades to centuries and increases strongly 
with sensitivity21. !e transient climate response (TCR, de"ned as 
the warming at the point of CO2 doubling in a model simulation in 
which CO2 increases at 1% yr�1) is a measure of the rate of warming 
while climate change is evolving, and it therefore depends on the 
ocean heat uptake �Q. !e dependence of TCR on sensitivity 
decreases for high sensitivities9,22,23.

ESTIMATES FROM COMPREHENSIVE MODELS AND PROCESS STUDIES

Ever since concern arose about increases of CO2 in the atmosphere 
causing warming, scientists have attempted to estimate how 
much warming will result from, for example, a doubling of the 
atmospheric CO2 concentration. Even the earliest estimates ranged 
remarkably close to our present estimate of a likely increase of 
between 2 and 4.5 °C (ref. 24). For example, Arrhenius25 and 
Callendar26, in the years 1896 and 1938, respectively, estimated that 
a doubling of CO2 would result in a global temperature increase of 
5.5 and 2 °C. Half a century later, the "rst energy-balance models, 
radiative convective models and general circulation models 
(GCMs) were used to quantify forcings and feedbacks, and with 

Temperature 
profile

Tropopause

Ice sheets 
and vegetation

Instantaneous RF

Whole 
atmosphere fixed

Ocean
Initial state

Stratospheric adjustments

Stratospheric 
adjusted RF

Fixed troposphere

Fixed surface

Timescale: 
days to months

Tropospheric adjustments

Effective RF/
zero surface 

temperature change RF

Non-radiative effects

Fixed surface

Timescale: 
days to months

F from 2 CO2

Climate 
feedbacks

Equilibrium 
warming S

Very little
ocean heat

uptake

Timescale:
centuries

Timescale:
millennia

Additional forcing
from slow feedbacks

Equilibrium 
warming 
with slow
feedbacks

Climate 
feedbacks

Transient 
warming T

Large
ocean heat

uptake

Timescale:
decades

F

Q

Q = F –  T

Figure 1 The concept of radiative forcing, feedbacks and climate sensitivity. a, A change in a radiatively active agent causes an instantaneous radiative forcing (RF). b, The 
standard definition of RF includes the relatively fast stratospheric adjustments, with the troposphere kept fixed. c, Non-radiative effects in the troposphere (for example of 
CO2 heating rates on clouds and aerosol semi-direct and indirect effects) occurring on similar timescales can be considered as fast feedbacks or as a forcing. d–f, During 
the transient climate change phase (d), the forcing is balanced by ocean heat uptake and increased long-wave radiation emitted from a warmer surface, with feedbacks 
determining the temperature response until equilibrium is reached with a constant forcing (e, f). The equilibrium depends on whether additional slow feedbacks (for 
example ice sheets or vegetation) with their own intrinsic timescale are kept fixed (e) or are allowed to change (f).
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standard definition of RF includes the relatively fast stratospheric adjustments, with the troposphere kept fixed. c, Non-radiative effects in the troposphere (for example of 
CO2 heating rates on clouds and aerosol semi-direct and indirect effects) occurring on similar timescales can be considered as fast feedbacks or as a forcing. d–f, During 
the transient climate change phase (d), the forcing is balanced by ocean heat uptake and increased long-wave radiation emitted from a warmer surface, with feedbacks 
determining the temperature response until equilibrium is reached with a constant forcing (e, f). The equilibrium depends on whether additional slow feedbacks (for 
example ice sheets or vegetation) with their own intrinsic timescale are kept fixed (e) or are allowed to change (f).
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(in °C W�1 m2) and S = �T2�CO2
 the equilibrium climate sensitivity, 

the equilibrium global average temperature change for a 
doubling (usually relative to pre-industrial) of the atmospheric 
CO2 concentration, which corresponds to a long-wave forcing 
of about 3.7 W m�2 (ref. 7). The beauty of this simple conceptual 
model of radiative forcing and climate sensitivity (equation (1)) 
is that the equilibrium warming is proportional to the radiative 
forcing and is readily computed as a function of the current CO2 
relative to the pre-industrial CO2: �T = S ln(CO2/CO2(t=1750))/ln2. 
The total forcing is assumed to be the sum of all individual 
forcings. The sensitivity S can also be phrased as8–10

                 S = �T0/(1 � f) (2)

where f is the feedback factor amplifying (if 0 < f < 1) or damping 
the initial blackbody response of �T0 = 1.2 °C for a CO2 doubling. 
!e total feedback can be phrased as the sum of all individual 
feedbacks9 (see Fig. 2; examples of feedbacks are increases in 
the greenhouse gas water vapour with warming; other feedbacks 
are associated with changes in lapse rate, albedo and clouds). To 
"rst order, the feedbacks are independent of T, yielding a climate 
sensitivity that is constant over time and similar between many 
forcings. !e global temperature response from di#erent forcings is 
therefore approximately additive11. However, detailed studies "nd 
that some feedbacks will change with the climate state12–14, which 
means that the assumption of a linear feedback term ��T is valid 
only for perturbations of a few degrees. !ere is a di#erence in the 
sensitivity to radiative forcing for di#erent forcing mechanisms, 

which has been phrased as their ‘e$cacy’7,15. !ese e#ects are 
represented poorly or not at all in simple climate models16. A more 
detailed discussion of the concepts and the history is given in 
refs 5, 7, 17–20.

Note that the concept of climate sensitivity does not quantify 
carbon-cycle feedbacks; it measures only the equilibrium surface 
response to a speci"ed CO2 forcing. !e timescale for reaching 
equilibrium is a few decades to centuries and increases strongly 
with sensitivity21. !e transient climate response (TCR, de"ned as 
the warming at the point of CO2 doubling in a model simulation in 
which CO2 increases at 1% yr�1) is a measure of the rate of warming 
while climate change is evolving, and it therefore depends on the 
ocean heat uptake �Q. !e dependence of TCR on sensitivity 
decreases for high sensitivities9,22,23.

ESTIMATES FROM COMPREHENSIVE MODELS AND PROCESS STUDIES

Ever since concern arose about increases of CO2 in the atmosphere 
causing warming, scientists have attempted to estimate how 
much warming will result from, for example, a doubling of the 
atmospheric CO2 concentration. Even the earliest estimates ranged 
remarkably close to our present estimate of a likely increase of 
between 2 and 4.5 °C (ref. 24). For example, Arrhenius25 and 
Callendar26, in the years 1896 and 1938, respectively, estimated that 
a doubling of CO2 would result in a global temperature increase of 
5.5 and 2 °C. Half a century later, the "rst energy-balance models, 
radiative convective models and general circulation models 
(GCMs) were used to quantify forcings and feedbacks, and with 
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3. Climate response on multi-decadal timescales
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surface warming increases in time    due to weakening ocean heat uptake

radiative forcing decreases in time    due to ocean carbon uptake
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3. Climate response on multi-decadal timescales

The TCRE changes by factor 2 over 5000 years in the GENIE model
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Conclusions
   

• The ocean heat uptake & carbon undersaturation partly compensate,     
helps determine how carbon emissions translate into global warming
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• Ventilation in the Southern Ocean is likely to play a particularly 
important role.  

modified by terrestrial drawdown, other greenhouse gases, aerosols ....

Goodwin, Williams & Ridgwell (2015)
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• Multidecadal variability in this relationship likely to be mainly from the 
heat flux
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